Using PGD de novo mutations can be detected in human in vitro fertilized embryos

17.02.2015


Reprogenetics, the largest U.S. genetics laboratory specializing in Preimplantation Genetic Diagnosis (PGD), announced the publication of new clinical data demonstrating that de novo single base mutations can be detected in embryos after in vitro fertilization (IVF). Small biopsies containing about ten cells from the embryos showed clinically relevant sensitivity and specificity using a novel advanced whole-genome sequencing (WGS) screening process.

The study is the first to show that a large majority of single base de novo mutations, which cause a disproportionately high percentage of genetic diseases, can be detected by PGD. De novo mutations only occur in reproductive cells and in embryos after fertilization. Typically these mutations are not present in the blood of the parents and will be missed, even by a comprehensive carrier screening of the parents. Standard PGD cannot detect these mutations because the tests are not sensitive enough or only look at very specific regions of the genome.

In addition to Reprogenetics, researchers from Complete Genomics, a leader in accurate whole human genomic sequencing, BGI-Shenzhen ("BGI"), a leading international genomics organization based in Shenzhen, China, and the New York University (NYU) Fertility Center at the NYU Langone Medical Center collaborated on the study.

"These findings are a significant step in developing advanced whole-genome sequencing as the 'ultimate' screen to find the healthiest embryos through PGD," says Santiago Munné, Ph.D., Founder and Director of Reprogenetics and Founder of Recombine. "This new approach can detect almost all genome variation, which may eliminate the need for further genetic testing during pregnancy or after birth while ensuring selection of the healthiest embryo for transfer to the future mother."

De novo mutations, including single nucleotide and short indel mutations, may cause severe intellectual disability, autism, epileptic encephalopathies and other serious congenital diseases. Since these mutations are unique to the specific sperm and egg that create an embryo, whole genome analysis of the parents is unable to detect them.

Source: news-medical.net

Read also:
International Reproductive Technologies Support Agency | Donation of oocytes, embryos and sperm
© 2025 – International Reproductive Technologies Support Agency. All rights reserved.